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• Abstract

A secure digital multiplexing technique is presented which uses a

pseudo—random process with a fundamental cycle length N. The method

can handle D < N signal sequences of length M < N. The SNR ’s of the

dc—multiplexed signals is N/4DM for large N, even if the additive noise

power is large. The dc—multiplexer must compute the discrete Fourier

transform of the pseudo—random sequence that is used to encode the signals.

Information is carried in the phase differences between the frequency

components of the multiplexed signal. De—multiplexing requires at least

IJIlNlog
2N arithmetic calculations.

This work was supported by the Office of Naval Research under contract.
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• Quadratic Multiplexing—A New Method for Secure Communication

Melvin .1. Hinich
Virginia Polytechnic Institute and State University

Introduction

This paper presents an information coding technique that increases

the channel capacity of a communication link. This technique can be

used with any reliable system for transmitting information from origin

to destination. For a computer to computer transmission link, for example ,

a number of messages are combined into a signal which is transmitted

by standard high frequency methods to a receiver which demodulates the

signal into a replica of the original multiplexed signal. This signal

is then unscrambled to yield the individual messages.

The increase in channel capacity results from information which is

carried in the phase differences between frequency components of the

broadband multiplexed signal, and thus the technique is inherently

nonlinear.

• Information is encoded using a cyclic pseudo—random process.

The receiver must generate the same pseudo—random process that is used

for encoding, making the technique secure from unauthorized interception.

1 will now discuss the pseudo—random process before going into details

about signal processing.

1. A Discrete Pseudo—random Process

I will limit my exposition to discrete time processes and digital

signal processing. The analogies with a continuous time system are

straightforward.
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Let (x( t~)} denote a discrete pseudo—random white noise process.

The time index t — nf ~~ , where n is an integer and f is the sampling

frequency. Algorithms for generating sequences which appear to be

• 
random and uncorrelated are well known by now (for an example see

Kronmal (1]). These algorithms produce sequences of numbers which

satisfy the statistical proper ties of a stationary white noise process.

One of the most widely used algorithms , the congruential generator ,

produces sequences that obey a uniform density on the (0 ,1) interval ,

• although it has a fundamental period which is determined by the bit

length of the computer registers, and the “seed” value used in the

algorithm.

It will simplify the Fourier transform mathematics if {x(t ) } Is

periodic. Let N denote the fundamental cycle length, and thus

x(t~ ) — x(t~~~) for all n. This cycle can be Set by suitable choice of

bit length, or by re—initializing the generator at n N using the

same seed value.

From here on, the x(t ) values will be treated as if they were

realizations from a finite variance stationary white noise process,

where for simplicity the expected value Ex(t~) — 0 for all n.1 That is,

for all n Ex(t + r)x(t ) — 0 for ¶ 
~ 0 (t an integer multiple of f 5

1)

and Ex2(t~ ) — a~.

Define the discrete Fourier transform

N—i
X(f ) — ~ x(t )exp(-.i2itft ) . 

- (1)
• n”O a

The principal domain of X(f )  is the band 0 < f < f
8
. Then it follows

that for each n —
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3

x(t ) — 
~ X(f

k
)exp(i2i f

k
t
fl

) ,  (2)
• k0

where = (k/N)f are equally spaced discrete frequencies. Moreover

X(fk) — X*(fN_k) where the star denotes complex conjugate, and X(f_k)

— X*(fk). Since Ex(t ) — 0, EX(f~) — 0.

The following three properties can easily be derived from the

assumption that {x(t )} is white. For each k — 0,1,...,N—1

1) ReX(fk) and ImX(fk) are uncorrelated,

2) The variance of X(fk) is E (X ( f
k) 1

2 —

3) X(f~) and X(fz) are uncorrelated for k #

In addition, from the central limit theorem

4) {X(f~):k — 0,...,N—l } have a complex Gaussian joint distribution

in the limit as N ~ ~~~. For a discussion of the complex Gaussian

distribution, see Brillinger (2].

2. Multiplexin,g The Signals

Suppose that D digitized signals of duration Mf;
1 are to be

multiplexed and transmitted. In order to simplify notation, let the

time unit be the sampling interval f~~, and supress the unit by setting

• t~ — n for each ii. Denote the D as follows: {a1(0),..., a1(M—l)}
. ..,

{aD(O),...,aD
(M_l)). Assuming that D and M<N, each ad signal is

convolved with the lagged product sequence {a 2x(n)x(n—d)}. These con—

volutions are summed to form the quadratic multiplexed signal (Figure 1).

D M-l
y(n) — 

~ 
ad(m)a x(n—w)x(n—m—d). (4)

• d—l m—0 X

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ —-~~~~~~~~~~~~~~
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lr
The signal {y(n)} is used to modulate a high frequency carrier. This

modulated signal is then transmitted to receivers which have the same

• pseudo—random generator that is used to multiplex the signals.

Taking the Fourier transform of (4), we have

D N—i 2Y(f ) ¶‘ Ad (fL )N 1 
~ a X(f

k~~
)exp (_ i21rf

Z
d),

k

where for k = 0, 1,..., N—i; and

M-l
Ad

(f
k
) — 

~ 
ad
(m)exp(_ i2lrf

k
m) (6)

• are the Fourier transforms of the signals . If prior to digitizing all

the signals were bandlimited at I , there is no aliasing if f = 2f0

and the quadratic multiplexed signal will then have the same bandwidth

as all the original signals.

For certain applications, such as speech transmission, it will be

better to set M — N and use a much higher sampling rate than f , i.e.

f5
>>f

0
. At the receiver end, the de—multiplexed signals must be smoothed

by a low pass filter of bandwidth f in order to have a high output

SNR.

In order to facilitate the statistical analysis of the de—multiplexing

technique, conceive of the signals as realizations from independent (zero

.ean) white Gaussian noise processes with equal variances. Let o~ denote

the signal variance (power).

3. be—multiplexing the Received Signal

Suppose that the receiver digitizes the high frequency version of

th. multiplexed signal, yielding a time compressed y signal plus noise

_ _ _  _ __ _  L
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• denoted by p(n) = y (n) + ~(n). Once again the time unit is supressed , but

this unit is much smaller than the original sampling interval f~~ when the

• signal is time compressed .

In the frequency domain , 
~~~~~ 

= + e(f k ) ,  where {e(f k
) }  is

the Fourier transform of the noise. Even when N is large , the

values can be computed in a short time by using an IC module programmed

with the FFT algorithm.

The receiver must have either the pseudo—random sequence {x(n)},

or its Fourier transform. Suppose tha t the receiver generates the un-

synchronized sequence {x(n + t ) } , where t is an unknown s h i f t .  It will

now be shown that the signals , delayed by r units, can be extracted with

a high SNR ratio when N/DM>>l.

Denote the Fourier transform of {x(n + t ) }  by X ( f
k
). Clearly

X1(f) — X (f )  exp i2lT ft .  Next define the weigh t function for each d

and k

W
d
(k)=(C1xL

~
l) 

~ 
X
~

(f
J

)X
T

(f k_j)exP(_ i21tf
j
d). (7)

As is shown in Theorem 2 (Appendix), for each m 0,..., H — 1

= N ’ wd
(k)P (f

k
)exp(_ i2lrf

k
m) (8)

k-O

— ad(m—c) + Ck~

where the e.~ are approximately uncorrelated Gaussian N(0,4N
l(DMO~+a~)).

In other words, the doub le Fourier transform of the array

{tC30 2X(f
j

)X( f k..j)P*(fk)} extracts the D signals with an output SNR of

NI4DM when a~<<N . The NxN array is transformed using two successive

— .. ~~~..-—-—— UJ_•.•__.__J• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. & ._... ... 1a SI .SI~~J~t’ ._ 
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FFT’s to yield an DxN array whose dth row is ad (m) . When M<N , the last• t D
N—H columns are discarded. The first row (d”O) is 2N~~ ~ 

ad
(m_r).

• d=l
The signals, however, are shifted by t units. If the receiver can

store the N complex numbers {X(fk
) },  there is no synchronization problem

since expression (9) holds with t = 0. The signals are extracted with

no delay if the receiver can store or compute {X(fk
)}. Note that the

transforms in (7) and (8) can be efficiently computed using the FFT

algorithm.

For applications where M N and f >>f , then the output of the

Fourier transform in (8) must be shifted back to the (O,f5
/2 )  band and

then smoothed by a low pass filter in order to increase the output SNR.

The SNR will be f /f D if the filter bandwidth is fs o  0

4. Comparison with Time Division Multiplexing

The lagged product sequence {a
2x(n)x(n—d)} can be thought of as

an ensemble of sinusoidal carriers with frequencies 0<f<f5, 
unit amplitudes

and random phases. The SNR for each signal is ~~~~~

Using no security processing, suppose that the signals were time

division multiplexed using a unit amplitude carrier. In order to achieve

the output SNR of N/4DM, each signal would have to be repeated o~N/4DM

times. Consequently , at most 4Dci 2 messages of length H could be

multiplexed using a N long sequence, and thus the quadratic method handles

more signals when a~<4.

In any event, the quadratic method is secure. This security is

achieved at the cost of computing ND FFT’s during de—multiplexing.

These flT’s can be performed by the main frame CPU for computer to

computer communication .

• ~~... - -•———-——-- —. -• • .— • — .• • .• • • ~~~ • • •,•‘~~- • _ ,
~~ ~~~~~~~~~~~~~~~~~
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• 
• Consider the following example. Let = 1, = iO~ , H = io

2
,

and D = 1O3. The SNR for each -~ignal is —30db. If N = 5x10
6
, then the

output SNR of each of the 1O3 de—multip lexed signals is Udb (N/4 DM — l2~

and ~,2 << N).
• I

Rather than computing the DM array {sd
(m) } by using DN FFT ’s, the

— double Fourier transform of X(fj
)X (f k_j)P*(fk) can be computed for

d — l,...,D and m = 0,.. .,M—l by DMN1og2
N arithmetic steps using the

idea behind the radix 2 FFT algorithm. The computations can be organized

in a sequential manner so that the entire NxN array of the triple produc t

• does not have to be stored.

As a final note, another signal can be transmitted with no inter—
H-i

ference with the D signals by adding ~ a~0
(n)x(n—m) to y(n). This

aD
linear component is uncorrelated with y(n). Thus the ~~(n) signal 

can

be extracted by taking the Fourier transform of the sample cross spectrum

between {x(n)) and {p(n)}. The SNR is the same as that for the other

signals.

-. .•- 
_
~~~

_
~
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Appendix

Theorem 1. The spectrum S (f) of {y(n)} is Ad(f)1
2. The spectrum

y d=i
of {p(n) } is S~ (f)  + a~ .

Proof: For each f, there exists a sequence k(N) such that

= 
k(N) -* f as N-’’. As is shown in [2], S ( f )  = lim N 1

IY(fk(N ) )1
2.

In order to derive this limit, note that EN 
u
IX(fk

)12 = ~
2 and thus

S
~

(f) = a2. Moreover by properties 3 and 4 (Introduction) ,

~
X(f

j
)X(f

k
)X(f

e
) = 0. Applying these results to (5),

EN
~~

LY (fk
)j
2 

= 
~~~~ 

Ar
(f
k

)A (f
k

)N
~~ 

~~~_

r=l s—i j0 £0

expi2lT(f
es — f

~
r ) a 4EN 2X (f k_J )X(f

J
)X (f k.~~

)X (f
L
). (Al)

For large N, it follows from properties 2, 3 and 4 that

EN 2X(f k_j)X(f
j

)X (f k_e)X (f
e

) = a4 if j = £ ~ k/2 or j + I = k

4 
(A2 )

— 3 a  ifj = t — k / 2x

— 0 otherwise.

Consequently, most of the cross terms in the second double sum are zero.

Applying (A2) to (Al), N
~
’IY(fk N ) 1 2 

~ 
Ad(f)1

2 as N-’~ since
d—l

N—i k(N)
expi2rf4(s—r) = 0 if r ~ s, and h a N 1 expi2itf (r+s) — 0. When

j0 ‘ N-’-— j0

the signals are realizations from independent Gaussian white noise

processes, 
~~~~ 

Ma~. The spectrum of {p(n)) is S~ (f)  + since

the errors are independent of the x’s.

— — 

1. 

—— 
~~~~~~~~

~_
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Theorem 2. Expression (9) holds. The error variance is approximately

4N~~ (DMo~ + a~) for large N. Thus the output SNR is N/4DM.

Proof: First consider the case -r — 0. From (5) and (A2),

a~~~
_lEX(f

j
)X(f

kj
)P*(f

k
) = A

~
(f
k

) (exPi2
~
f
J

d + ex~i2~f~~J
d)

d—l

D 
(A3)

= 
~~ 

A
~

(f
k

) (expi2wf 4d + expi2irf
k
d exp (—i2~f~d)

d—l

D
if j ~ k/2. When j = k/2, the expected value is 3 A~ (f~)expi21rf~ /2d.• N—h d=l
Since ~ exp(—i2nf21d) = 0 for each d — 1,..., N—i, it follows from

j—0
(7) and (A3) that for r 0 and d’O,

* — 
N—i 

*

~~~~~~ 
Uk

) = N 2 
LX f j

)x(f
kj

)P (f
k)exP

(_ i2
~~~

ci)
- .j—0

— A
~

(f
k

) + 0(DM/N) (A4 )

since N ’ ~ Ad (f
k
)expi2lTf

k,2
d is of the order 0(DM/N).

d—l

Transforming (A4) into the time domain as shown in (8),

Esd (m) — a
d(m) 

a 0,.. .,M — 1 (AS)

D
for large N. When d — 0, Es

0 
(a) — 2N~~ a

d
(m).

d—l
When -t ~ 0, the right hand side of (A4) is multiplied by

ex~i2irf~ r exPi2vf
k j

t = expi2nf
k
r. Thus Esd (m) ad

(m_r) plus an

error whose distribution will nov be derived using the stochastic

assumptions for the signals.

• 
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The next step is to derive the asymptotic distribution of the

errors 5d 
— Esd. The term B(j,k) — N LX(f

j
)X(f k_j)P 

~~~ 
is the sample

cross bispectrum at between (x(n) } and the received signal. As is

shown by Rosenbla tt and Van Ness [3~ , the variance of B(j,k) is

NSX (f
j

)S
x

(f k_j)S
p

(f
k
). By Theorem 1, S~,( f )  — DMa3 -‘- a~ . Thus

Var B(j,k) a Na~ (DMc~ + a~).

For large N the B(j,k) variates are uncorrelated in the triangular

region {j — O,...,[k/2); k — 0,...,N—l}. This triangle is called the

principal domain of B(j ,k). The following symmetries relate the

B(j,k) ’s outside this domain to those in the domain:

B(k/2 + I , k/2 — I) a B(k/2 — I, k/2 + I) for k even,

B((k—l)/2 + I , (k+i)/2 — I) B((k+l)/2 — I, (k—i)/2 + I) for k odd and

* 2
B (N—j ,N—k) a B (j ,k). Thus there are approximately N /4 degrees of

freedom for the 8(j,k) ’ s in the square {j = 0,...,N —1 ; k = O,,...,N — 11.

Expression (8) can be rewritten as follows:
N—l N-i

~ ~~
8(J

~
k)exP[_ i2rr (f

j
d+f

k
m)]. By the central limit

=0 k—0
theorem, the variance of 5d (m) is 4a N VarB(j,k) — 4N (DMa + a). The

factor 4 results from the syum~etries of the B(j,k) in the double sum.

Moreover, the sd(m) are uncorrelated for large N by the orthogonality

inherent in Fourier transforms (property 3).

J
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Footnote

1. Simple whiteness is not sufficient to obtain the asymptotic results
used in this paper. Assume, in addition, that Ex(n1

)x ( n
2

)x(n
3
) = 0;

• 
Ex2(n

1
)x2(n

2
) — if n

1 ~ 
n2; and Ex(n

1
)x(n

2
)x(n

3
)x(n

4
) 0 if

# ,‘ n3 # a4
. These conditions hold if the process is Gaussian.

4
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